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Abstract – This paper describes a prototype of software 

system of neural network control of telemetry data for 

malfunction diagnosis of spacecraft subsystems. The 

prototype is used for testing of intelligent technologies for 

processing information about a spacecraft subsystems state, 

prediction and detection of irregularities of the spacecraft 

subsystem modes. The Information obtained from on-board 

data sources on space communication channel is used for 

processing. 

Keywords – neural network, telemetry, spacecraft, 

diagnosis. 

I. INTRODUCTION 

Satellite telemetry is a set of technologies that allows 

performing remote sensing and collection of scientific data 

about subject of a research (data from Earth remote 

sensing) and information about state of on-board 

spacecraft (SC) subsystems those are used by an operator 

of Mission Control Centers. Telemetry systems are part of 

command-and-measurement systems (CIS) in space 

industry. 

Reliability and fault and contingency resiliency are 

important characteristics of any space system [1]. Multiple 

reservations of hardware and software is primary method 

for solving these problems, but a development of CCSDS 

standards [2] and a possibility to design bound hardware-

software systems give an ability to dynamically 

redistribute control functions of Mission Control Centers 

and SC. This significantly increases the viability and 

lifetime of orbital systems. 

Deterministic approach to control leads to a partial loss 

of diagnostic information that is contained in fluctuating 

component of diagnostic signals. Having a possibility of 

learning, artificial neural networks allow considering in 

diagnostics not only random nature of signals, but also 

features of particular spacecraft subsystems. The prototype 

of software system of neural network control of telemetry 

information (PSS-TMS) has been developed for testing 

neural network technologies for diagnostics of SC 

subsystems. 

II. ARCHITECTURE OF PSS-TMS 

The following basic functional requirements have been 

incorporated in architecture of PSS-TMS: a solution of 

basic tasks of data organization and transmission, 

telemetry data storage, preprocessing and intelligent 

processing of telemetry data on spacecraft board directly. 

Learning and adapting to different telemetry conditions 

on basis of simulation modeling is a key conceptual 

feature of PSS-TMS. 

PSS-TMS is a set of subsystems (Figure 1). 

 Interaction subsystem provides obtaining 

telemetry data. It is designed to collect telemetry 

data from sensors, cameras, telescopes, etc., as 

well as information about their status, and to 

transfer of control commands. 

 Sensor readings analysis subsystem performs 

analysis of sensor status and transmits a result of 

the analysis to control, diagnosis and data 

preprocessing subsystems. 

 Hardware diagnosis subsystem analyzes a current 

state of the sensors within existing state space. It 

performs learning of the system and knowledge 

extraction about possible states of the hardware 

and an identification of off-nominal states on basis 

of current sensor states and the state space. A 

diagnostics result is transferred to Control 

subsystem.  

 Data preprocessing subsystem performs data 

filtering and removing data redundancy. 

 Storage subsystem is used to store telemetry data 

and descriptions of all possible states. 

 Intellectual data processing subsystem performs 

neural network data processing.  

 Packets assembly subsystem fetches the telemetry 

data from database (for example, HDF-files), 

forms data packets and transmits these ones to 

Data transmit/receive subsystem. 

 Control data receiving subsystem is designed to 

process control data that are received from an 

information user and to transfer them to Control 

subsystem in order to form corresponding control 

signals. 

 Current state transferring subsystem prepares data 

about the current state of the system and its 

sensors. 

 Control subsystem is designed to collect and 

analyze data about state of various subsystems, as 

well as to generate control signals. 
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Figure 1.  Block diagram of PSS-TMS 

 Data transmit/receive subsystem provides a direct 

interaction with a radio channel. A transmission 

and a reception can be carried out through any 

communication channel (analog of TCP) or in 

form of a datagram (analog of UDP). 

III. METHODS AND ALGORITHMS 

A.  Basic algorithms of telemetry data processing 

Rate of change of measurable parameters is curried 

out on basis of estimators of the parameters in current and 

prior times. Filtering algorithms based on Kalman’s 

method and multidimensional regression analysis are 

used.  

Pedrich’s algorithm of construction of membership 

functions of objects to the given alphabet of classes is 

used for suppression of data redundancy. Various 

classification algorithms, including neural networks [3-

11] are used for analysis of dynamic telemetry data. 

B. Simulation modeling of measured parameters 

Developing, debugging and testing of PSS-TMS 

software is executed on objects that emulate a nature of 

on-board systems and hardware signals. 



Signals of temperature, pressure and vibration are the 

most complex for processing and analysis. Between the 

signals, including those ones of different physical nature, 

there may be a high degree of correlation.  

During development of algorithms for simulation of 

on-board telemetry objects, we used macrophysical 

(thermodynamic) approach that generalizes an essence of 

processes occurring in airborne systems.  

Various types of links between on-board objects, non-

linearity of processes taking place on board and time are 

cause of various delayed correlations between measured 

parameters, which are almost impossible to describe 

analytically. A lot of various external factors affect 

significantly on the state of all SC subsystems and their 

objects. 

C. The structure of neural network signal processing 

subsystem for prediction of the behavior of complex 

dynamic systems 

The neural network subsystem is composed of the 

following functional blocks. 

 A neural network block of interpolation of SC 

trajectory. It performs interpolation of the 

trajectory and allows receiving of position and 

velocity vectors in intervals between measurement 

sessions [12]. 

 A neural network block of SC trajectory 

prediction. It provides an extrapolation of SC 

trajectories. 

 A block of SC behavior prediction. It is designed 

for building and predicting SC phase trajectory. It 

allows tracing of SC in a feasible region of an 

attractor. 

 A neural network block for controlling SC 

position and orientation. It is designed to generate 

control actions on flywheel of SC in order to 

correct its motion and position. 

 A neural network telemetry data compression 

block. It is designed to reduce communication 

transmission. 

 A neural network diagnosis of SC subsystems. It 

is designed to monitor a performance of various 

SC subsystems. 

An on-board telemetry is multi-dimensional time 

series, including these ones with a switchable dynamic. 

Counts of the time series characterize a state of a subject 

of research to certain point of time and represent them in 

space of measurable attributes as continuous or quasi-

continuous trajectory.  

It is significant for the time series generated by real 

dynamic objects that a transition time from one state to 

another is sufficiently large in comparison with a 

sampling period of a flow. A dynamics is not switched 

instantly, but there is the period of a drift from one state to 

another, during which the object is not located somewhere 

in a switching process. An apparatus of hierarchical neural 

network classification is proposed to solve this problem. 

An algorithm for constructing hierarchical neural 

network classifiers (HNNC) is a process of constructing a 

decision tree [13], where nodes are implemented as a 

neural network with a specified size of a hidden layer. A 

construction of HNNC begins by calling an algorithm of 

formation of class groups (AFCG). Its result is a union of 

original classes into small amount of groups. Thus, a base 

node of HNNC (the first level of hierarchy) is formed. It is 

the most "coarse" classification. Resulting group of 

classes can be regarded as branches of the decision tree. 

The neural network is created after constructing the 

base node for each class group (for the tree branches) and 

AFCG is called for each thee branch. The algorithm 

examines only the classes in this branch of the tree. A 

node of next level of hierarchy is formed as a result of 

AFCG, so new groups (branches) are formed. After 

formation of all nodes of the hierarchy level, AFCG is 

called for each new branch. The nodes of higher levels of 

the hierarchy perform more and more detailed 

classification. 

The algorithm for constructing hierarchical neural 

network is stopped if the branch contains only one class, 

or if further detail is not possible (for example, if a 

percentage of classification errors exceed a certain 

threshold). 

IV. SYSTEM AND SOFTWARE ARCHITECTURE OF  

PSS-TMS 

The software of PSS-TMS consists of PS-BOARD 

simulation subsystem and PS-CIS system of processing 

and analysis of telemetry data, which communicate 

through CHANNEL transport subsystem. Figure 2 shows 

a diagram of interaction of these subsystems with their 

projection on the communication levels of CCSDS [14-

16]. PS-BOARD includes the following two software 

tools: 

 Simulation modeling of SC on-board systems and 

devices as a source of telemetry data. 

 Аn integrated application of communication 

levels, which provides the minimum required 

level of service, which must be taken into account 

for proper modeling on the side of PSBOARD. 

PS-CIS includes: 

 An implementation of integrated communication 

levels, which provides the minimum required 

level of service, which must be taken into account 

for proper modeling on the side of the PS-CIS. 

 A core of PSS-TMS – a set of artificial 

intelligence tools based on neural network for the 

intelligent processing of telemetry data; 

 Tools for recording/playback and storage 

(archiving) of telemetry data. 

AIS is a standalone application in terms of the CCSDS 

and consists of three components: an evaluation of data, 

an allocation and a forecasting. 

 



 
Figure 2.  System architecture of PSS-TMS 

CHANNEL includes: 

 A simulation model of the radio link, which 

consists of the encoder and decoder of radio 

signal. 

 Tools for distortion of transmitted data.  

PSS-TMS subsystems are independent components 

that communicate over the natural communication 

mechanisms, such as messages, channels and sockets. To 

do this, each level provides the possibility for 

encapsulation of packets of the current level in packets of 

OS communication mechanism. 

 

V. EXAMPLES OF WORK 

A. Evaluation of statistical characteristics of a system 

of quasi-stationary states 

1000 synthesized three-dimensional random variables 

are applied to the input of the diagnostic software. A result 

is 18 two-dimensional vectors, which correspond to the 

centers of data clusters.  

B. Classification of multi-dimensional vector 

A test was conducted in the neighborhood reduction 

mode with the configuration file: the number of neighbors 

– 10; the descriptor of a reduction mode – 1 (in this case - 

in the neighborhood); the initial size of the neighborhood 

as a percentage of the field data size – 5; the growth rate 

of neighborhood – 1.4. The result of calculation is 

obtained in 22 seconds. 

C. The prediction of the system state 

Tests were carried out on a series of two-dimensional 

set of vectors. The parameters defined in the configuration 

file have the following meanings: the memory capacity of 

the delay line for each detector – 30; is the number of 

neurons in the hidden layer – 80; the number of training 

data sets – 1500; the maximum number of iterations of 

learning – 10000; the coefficient of learning rate – 0.1. 

"Power" and "noisy signal" test signals were used as 

test data and data for neuron network training. The 

maximum deviation of the predicted signal from the 

source:  

 “Power” is equal to 0.0530; 

 “noisy signal” is equal to 0.2375.  

D. Prediction of multivariate time series 

A prediction is based on the use of ensembles of 

neural networks with using elements of an evolutionary 

strategy for an ensemble learning algorithm [17]. 

The basic version of the test data for the experiments 

is the telemetry data, as well as time series with different 

characteristics (see Table 1). 

TABLE I.  DESCRIPTION OF DATA SETS 

Name Description Size 

A  Generated by the laser, one-dimensional 
data. 

1000 

B1,B2,B3 data from physiological sensors, interval 

= 0.5s.  

34000 

Gen Computer-generated multi-dimensional 
data of states of the objects. 

28000 

P39 Information from the position sensors 

about the state of the object in space. 

2181 

 

For forecasting, the data from six aircraft sensors that 

measure the following six parameters: a distance, a speed, 

a heading angle on the first line of communication, a 

pitching angle of the first line of communication, a 

heading angle on the second line of communication and a 

pitching angle according to the second line are used. We 

also used a set of «The Santa Fe Time Series Competition 

Data», which is synthetic generated multivariate time 

series of states of objects [18]. 

An evaluation of the model accuracy is also an 

important component of testing. For this purpose, a series 

of experiments was performed. The different single NNs, 

different ensembles of NNs, and the proposed model with 

different sets of different NN ensembles were trained on 

the same data. The results are shown in Table. 2: the 

average error on time series (Error 1), and on classified 

data (Error 2). 

TABLE II.  ACCURACY ESTIMATION 

Model  Error 1, % Error  2, % 

Single NN 6,7-24 5,5-22 

Assemble NN  5,6-17,2 2,7-14 

The proposed model 5,6-8,3 2,7-7,7 

 

CONCLUSION 

The developed prototype provides the intelligent 

processing and analysis of information about the state of 

the SC on-board subsystems based on neural network 

technology. Thus, this prototype provides the ability to 

automate the monitoring of SC onboard subsystems and 

improve its quality. 
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